PCB20層板廠家,剛柔結合板

  • 圖片0
  • 圖片1
  • 圖片2
  • 圖片3
  • 圖片4
  • 圖片5
1/6
新浪微博
QQ空間
豆瓣網
百度新首頁
取消

PCB電路板沉金與鍍金工藝的區別?
鍍金,一般指的是“電鍍金”、“電鍍鎳金”、“電解金”等,有軟金和硬金的區分(一般硬金是用于金手指的),原理是將鎳和金(俗稱金鹽)溶化于化學藥水中,將線路板浸在電鍍缸內并接通電流而在電路板的銅箔面上生成鎳金鍍層,電鎳金因鍍層硬度高,耐磨損,不易氧化的優點在電子產品中得到廣泛的應用。

沉金是通過化學氧化還原反應的方法生成一層鍍層,一般厚度較厚,是化學鎳金金層沉積方法的一種,可以達到較厚的金層。
沉金與鍍金的區別:

1、沉金與鍍金所形成的晶體結構不一樣,沉金對于金的厚度比鍍金要厚很多,沉金會呈金黃色,較鍍金來說更黃(這是區分鍍金和沉金的方法之一)。

2、沉金比鍍金更容易焊接,不會造成焊接不良。

3、沉金板的焊盤上只有鎳金,信號的趨膚效應是在銅層上傳輸,不會對信號產生影響。

4、沉金比鍍金的晶體結構更致密,不易產生氧化。

5、鍍金容易使金線短路。而沉金板的焊盤上只有鎳金,因此不會產生金線短路。

6、沉金板的焊盤上只有鎳金,因此導線電阻和銅層的結合更加牢固。

7、沉金板的平整性與使用壽命較鍍金板要好。

陶瓷PCB電路板有什么優勢呢?
1.為什么要選擇陶瓷電路板?
陶瓷基板,由于散熱性能、載流能力、絕緣性、熱膨脹系數等,都要大大優于普通的玻璃纖維PCB板材,從而被廣泛應用于大功率電力電子模塊、航空航天、電子等產品上。
普通PCB通常是由銅箔和基板粘合而成,而基板材質大多數為玻璃纖維(FR-4),酚醛樹脂(FR-3)等材質,粘合劑通常是酚醛、環氧等。在PCB加工過程中由于熱應力、化學因素、生產工藝不當等原因,或者是在設計過程中由于兩面鋪銅不對稱,很容易導致PCB板發生不同程度的翹曲。

與普通的PCB使用粘合劑把銅箔和基板粘合在一起的,陶瓷PCB是在高溫環境下,通過鍵合的方式把銅箔和陶瓷基片拼合在一起的,結合力強,銅箔不會脫落,可靠性高,在溫度高、濕度大的環境下性能穩定。

2.陶瓷基板的材質有哪些?

氮化鋁(AlN)

氮化鋁陶瓷是以氮化鋁粉體為主晶相的陶瓷。相比于氧化鋁陶瓷基板,絕緣電阻、絕緣耐壓更高,介電常數更低。其熱導率是Al2O3的7~10倍,熱膨脹系數(CTE)與硅片近似匹配,這對于大功率半導體芯片至關重要。在生產工藝上,AlN熱導率受到殘留氧雜質含量的影響很大,降低含氧量,可明顯提高熱導率。目前工藝生產水平的熱導率達到170W/(m·K)以上已不成問題。

氧化鋁(Al2O3)

氧化鋁是陶瓷基板中常用的基板材料,因為在機械、熱、電性能上相對于大多數其他氧化物陶瓷,強度及化學穩定性高,且原料來源豐富,適用于各種各樣的技術制造以及不同的形狀。按含氧化鋁(Al2O3)的百分數不同可分為:75瓷、96瓷、99.5瓷。氧化鋁含有量不同,其電學性質幾乎不受影響,但是其機械性能及熱導率變化很大。純度低的基板中玻璃相較多,表面粗糙度大。純度越高的基板,越光潔、致密、介質損耗越低,但是價格也越高。

氧化鈹(BeO)

具有比金屬鋁還高的熱導率,應用于需要高熱導的場合,溫度超過300℃后迅速降低,但是由于其毒性限制了自身的發展。

綜合以上原因,可以知道,氧化鋁陶瓷由于比較的綜合性能,在微電子、功率電子、混合微電子、功率模塊等領域還是處于主導地位的。

對比了市面上相同尺寸(100mm×100mm×1mm)、不同材料的陶瓷基板價格:96%氧化鋁9.5元,99%氧化鋁18元,氮化鋁150元,氧化鈹650元,可以看出來不同的基板價格差距也比較大。


3.陶瓷PCB的優勢與劣勢?

優點:
載流量大,100A電流連續通過1mm0.3mm厚銅體,溫升約17℃;100A電流連續通過2mm0.3mm厚銅體,溫升僅5℃左右;

更好的散熱性能,低熱膨脹系數,形狀穩定,不易變形翹曲。

絕緣性好,耐壓高,保障人身安全和設備。

結合力強,采用鍵合技術,銅箔不會脫落。

可靠性高,在溫度高、濕度大的環境下性能穩定

缺點:
易碎,這是主要的一個缺點,這也就導致只能制作小面積的電路板。

價格貴, 電子產品的要求規則越來越多,陶瓷電路板還是用在一些比較的產品上面,低端的產品根本不會使用到。

高精密度(HDI板)電路板的耐熱性介紹

HDI板的耐熱性能是HDI可靠性能中重要的一個項目,HDI板的板厚變得越來越薄,對其耐熱性能的要求也越來越高。無鉛化進程的推進,也提高了HDI板耐熱性能的要求,而且由于HDI板在層結構等方面不同于普通多層通孔PCB板,因此HDI板的耐熱性能與普通多層通孔PCB板相比有所不同,一階HDI板典型結構。HDI板的耐熱性能缺陷主要是爆板和分層。到目前為止,根據多種材料以及多款HDI板的耐熱性能測試的經驗,發現HDI板發生爆板機率大的區域是密集埋孔的上方以及大銅面的下方區域。

耐熱性是指PCB抵抗在焊接過程中產生的熱機械應力的能力, PCB在耐熱性能測試中發生分層的機制一般包括以下幾種:

1) 測試樣品內部不同材料在溫度變化時,膨脹和收縮性能不同而在樣品內部產生內部熱機械應力,從而導致裂縫和分層的產生。

2) 測試樣品內部的微小缺陷(包括空洞,微裂紋等),是熱機械應力集中所在,起到應力的放大器的作用。在樣品內部應力的作用下,更加容易導致裂縫或分層的產生。

3) 測試樣品中揮發性物質(包括有機揮發成分和水),在高溫和劇烈溫度變化時,急劇膨脹產生的內部蒸汽壓力,當膨脹的蒸汽壓力到達測試樣品內部的微小缺陷(包括空洞,微裂紋等)時,微小缺陷對應的放大器作用就會導致分層。

HDI板容易在密集埋孔的上方發生分層,這是由于HDI板在埋孔分布區域特殊的結構所導致的。有無埋孔區域的應力分析如下表1。無埋孔區域(結構1)在耐熱性能測試受熱膨脹時,在同一平面上各個位置的Z方向的膨脹量都是均勻的,因此不會存在由于結構的差異造成的應力集中區域。當區域中設計有埋孔且埋孔鉆在基材面上(結構2)時,在埋孔與埋孔之間的A-A截面上,由于基材沒有收到埋孔在Z方向的約束,因而膨脹量較大,而在埋孔和焊盤所在的B-B截面上,由于基材受到埋孔在Z方向的約束,因而膨脹量較小,這三處膨脹量的差異,在埋孔焊盤與HDI介質和塞孔樹脂交界處和附近區域造成應力集中,從而比較容易形成裂縫和分層。

HDI板容易在外層大銅面的下方發生分層,這是由于在貼裝和焊接時,PCB受熱,揮發性物質(包括有機揮發成分和水)急劇膨脹,外層大銅面阻擋了揮發性物質(包括有機揮發成分和水)的及時逸出,因此產生的內部蒸汽壓力,當膨脹的蒸汽壓力到達測試樣品內部的微小缺陷(包括空洞,微裂紋等)時,微小缺陷對應的放大器作用就會導致分層。

深圳市賽孚電路科技有限公司為你提供的“PCB20層板廠家,剛柔結合板”詳細介紹
在線留言

*詳情

*聯系

*手機

推薦信息

成都PCB機元器件>成都多層電路板>PCB20層
信息由發布人自行提供,其真實性、合法性由發布人負責;交易匯款需謹慎,請注意調查核實。
觸屏版 電腦版
@2009-2023 京ICP證100626
狼群视频在线观看高清免费下载安装